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Low social status is an important predictor of disease susceptibility
and mortality risk in humans and other social mammals. These
effects are thought to stem in part from dysregulation of the
glucocorticoid (GC)-mediated stress response. However, the mo-
lecular mechanisms that connect low social status and GC dysre-
gulation to downstream health outcomes remain elusive. Here, we
used an in vitro GC challenge to investigate the consequences of
experimentally manipulated social status (i.e., dominance rank) for
immune cell gene regulation in female rhesus macaques, using
paired control and GC-treated peripheral blood mononuclear cell
samples. We show that social status not only influences immune
cell gene expression but also chromatin accessibility at hundreds
of regions in the genome. Social status effects on gene expression
were less pronounced following GC treatment than under control
conditions. In contrast, social status effects on chromatin accessi-
bility were stable across conditions, resulting in an attenuated
relationship between social status, chromatin accessibility, and
gene expression after GC exposure. Regions that were more
accessible in high-status animals and regions that become more
accessible following GC treatment were enriched for a highly
concordant set of transcription factor binding motifs, including
motifs for the GC receptor cofactor AP-1. Together, our findings
support the hypothesis that social status alters the dynamics of
GC-mediated gene regulation and identify chromatin accessibility
as a mechanism involved in social stress-driven GC resistance.
More broadly, they emphasize the context-dependent nature of
social status effects on gene regulation and implicate epigenetic
remodeling of chromatin accessibility as a contributing factor.

social status | gene regulation | dominance rank | chromatin accessibility |
epigenomics

Social status is an important predictor of health and survival in
social animals, including humans (1–4). In the United States,

for instance, men in the lowest income percentile live 15-y-
shorter lifespans, on average, than men in the highest income
percentile (5). Similarly, British civil servants in the lowest em-
ployment grades are twice as likely to develop cardiovascular
disease compared with those in the highest employment grades,
despite universal access to the British National Health Service
(6). Social status gradients in health can be explained in part by
correlated variation in health risk behaviors, resource access, and
the long-term effects of social adversity earlier in life (7, 8).
However, increasing evidence indicates that low social status also
leads to direct physiological effects (9–18). For example, exper-
imentally induced low social status in cynomolgus macaques and
rhesus macaques leads to increased rates of atherosclerosis and
hyperinsulinemia and an exaggerated gene regulatory response
to bacterial LPS (9, 10, 19–26).

The direct effects of low status may be mediated, at least in
part, by the chronic stress of social subordination (27, 28). In
humans and other hierarchically organized primates, low status is
associated with greater social unpredictability and reduced social
control, fewer affiliative interactions, and reduced social in-
tegration (29). These experiences are thought to increase expo-
sure to stressors (e.g., via increased rates of harassment) and
reduce the capacity to buffer against stressful experiences (e.g.,
via lack of social support) (29). Such changes in turn lead to
physiological alterations in the regulation of the hypothalamic–
pituitary–adrenal (HPA) axis, which controls the production of
glucocorticoids (GCs), a class of steroid hormones involved in
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metabolic and immune regulation (30). Chronic social stress has
been associated with both elevated baseline GC levels (e.g., refs.
31 and 32, but see ref. 33) and impaired GC negative feedback
(i.e., GC resistance; refs. 28 and 34), suggesting a physiological
basis for social gradients in metabolic and inflammation-related
disorders (35). In support of this hypothesis, the psychological
stress of caring for a chronically ill child is associated with both
GC resistance and impaired GC suppression of proinflammatory
signaling (34). Similarly, major social stressors such as job loss or
bereavement predict both GC resistance and susceptibility to the
common cold (28). Causal effects of social stress on GC function
have also been demonstrated in experimental animal models.
For instance, red squirrel mothers exposed to cues for increased
resource competition (but not increased resource competition
itself) exhibit elevated GC levels, a change that in turn alters
offspring growth (36).
At the molecular level, GCs operate as signaling molecules

that affect transcriptional regulation, thus linking multiorgan
HPA axis regulation to changes in metabolic and immune
function within cells. Circulating GCs canonically influence gene
regulation by diffusing across the cell membrane and binding to
the cytosolic form of the nuclear receptor GC receptor (GR,
encoded by the gene NR3C1). Once bound, the GC–GR com-
plex translocates into the nucleus, where it binds directly or in-
directly [via tethering to other transcription factors (TFs); ref.
37] to target DNA sequences [e.g., GC response elements
(GREs); refs. 30 and 38]. There are multiple potential mecha-
nisms through which GCs exert antiinflammatory effects, and
GCs have been associated with changes in gene regulation at
several levels (39–42), including (i) GR induction of IκBα, which
binds to the proinflammatory TF complex NF-κΒ and prevents it
from entering the nucleus, (ii) inhibition of histone acetylation at
the promoters of proinflammatory genes, (iii) posttranscriptional
degradation of inflammation-related mRNAs, (iv) recruitment of
negative elongation factor at promoters of inflammatory genes,
which inhibits activation, and (v) GR tethering to the NF-κB
component p65 (RelA) at NF-κB binding sites to inhibit proin-
flammatory gene transcription. GC resistance, which impairs
termination of proinflammatory signaling, is thus also linked to
multiple regulatory mechanisms, including defective histone
acetylation, increased expression of proinflammatory TFs, and
disinhibition of proinflammatory signaling by the alternative GR
receptor, GRβ (reviewed in ref. 43).
HPA axis signaling via GC regulation therefore provides a

plausible mechanism for linking the central nervous system,
which senses and processes social experiences, to gene regulation
in the periphery, where social stress is translated into poor health
outcomes. Indeed, observational studies of human subjects (44–
50) and experimental animal models for social subordination-
induced stress (9, 10) have identified a strong relationship be-
tween the chronic social stress associated with low social status
and proinflammatory gene expression in peripheral immune
cells. In support of a role for GC signaling, predicted GR and
NF-κB binding sites are enriched near genes that are differen-
tially expressed in association with social isolation (51), low so-
cial status (9, 49, 52), and early-life social adversity (53, 54). In
addition, experimental manipulation of social status in rhesus
macaques results in a more pronounced proinflammatory gene
expression response to LPS exposure in low-ranking animals.
Notably, TF binding sites for NF-κB are enriched in accessible
chromatin near genes affected by social status, suggesting that
changes in GC-related NF-κB transcriptional activity may ex-
plain the low status-driven proinflammatory phenotype (9).
However, although low-status macaques exhibit some evidence of
GC resistance (22–24), both the degree to which GC signaling is
responsible for social status-driven gene expression patterns and the
gene regulatory mechanisms involved remain unclear.

To address these gaps, here we combined a powerful non-
human primate model for investigating the consequences of
chronic social stress (9, 10) with a well-established model for
investigating the gene regulatory response to GC signaling: in
vitro treatment with the synthetic GC dexamethasone (Dex) (41,
55, 56). Specifically, we sequentially introduced 45 female rhesus
macaques into nine new social groups of five females each, a
manipulation that produces a strong relationship between in-
troduction order and dominance rank (earlier introduction
predicts higher social status/dominance rank; refs. 10 and 57).
This approach allows the causal effects of social subordination-
induced stress to be disambiguated from alternative explana-
tions, while taking advantage of the natural tendency of female
rhesus macaques to form stable status hierarchies (58). To test
how social status affects the response to GC signaling, we then
cultured peripheral blood mononuclear cells (PBMCs) from
each study subject using a paired control (untreated) and Dex-
treated study design (following ref. 55).
Because the majority of GR–DNA binding events are thought

to occur in regions of chromatin accessible to TF binding before
GR nuclear translocation (59), we measured both genome-wide
gene expression and chromatin accessibility in our samples. We
hypothesized that social status would not only predict variation
in PBMC gene expression [as previously shown in rhesus ma-
caques and humans (10, 49)] but also patterns of open chromatin
and TF binding, which have not previously been investigated. In
support of this idea, social experiences have been shown to
modulate patterns of epigenetic marks and TF binding in other
vertebrates [e.g., three-spined sticklebacks (60), mice (61), and
prairie voles (62)]. Further, as shown for exposure to LPS (9), we
hypothesized that the effects of social status on gene regulation
would be conditional on GC exposure. Finally, we hypothesized
that low-ranking animals, who exhibit signatures of social stress-
mediated GC resistance (28, 34), would also exhibit gene regu-
latory patterns consistent with reduced responsiveness to GC
signaling, particularly at GR- and NF-κB–regulated genes.

Results
Social Status and GC Stimulation Alter Chromatin Accessibility and
Gene Expression. We manipulated the dominance rank positions
of 45 adult female rhesus macaques by sequentially introducing
them into newly constructed social groups of five females each
(as reported in ref. 9) (Fig. 1A, SI Appendix, Table S1, and
Dataset S1). This approach produces a strong correlation be-
tween order of introduction and resulting dominance rank, in
which females introduced earlier become higher-ranking [Pear-
son’s r = −0.67, P = 8.8 × 10−7 at time of sample collection; rank
was measured using a continuous Elo rating score (63); Fig. 1A]
(see also refs. 9 and 57). Consistent with dominance rank dy-
namics typical for female rhesus macaques, dominance rank
values were highly stable from group construction until sample
collection.
We isolated PBMCs from 43 females (all members of seven

social groups and four of the five members of the remaining two
groups; Materials and Methods). We divided each sample into
two aliquots of 1 million cells each and simultaneously treated
one aliquot with 1 μM Dex (the “Dex+” sample) and the second
aliquot with 0.02% EtOH, the vehicle for Dex (the “Dex−”
control sample). Following a 90-min incubation at 37° C (an
incubation period that results in a strong gene expression re-
sponse to Dex; ref. 55), we extracted RNA and intact nuclei from
each sample for RNA sequencing (RNA-seq) and assay for
transposase-accessible chromatin using sequencing (ATAC-seq)
analysis, respectively (64, 65). After sequencing and quality
control, we retained all 43 control and 43 Dex+ samples for both
gene expression and chromatin accessibility analyses (Fig. 1 B
and C).
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As expected (55), Dex treatment resulted in substantial
changes to PBMC gene expression levels. Principal component
(PC) analysis of all expressed genes (n = 10,385) clearly sepa-
rated Dex− from Dex+ samples on PC1 (paired T42 = 80.61,
P = 1.12 × 10−47; Fig. 1D). At the individual gene level, we
identified 7,359 differentially expressed genes (70.9% of those
tested) between Dex+ and Dex− samples at a false discovery
rate (FDR) of 10% (n = 5,032 differentially expressed genes at
FDR < 1%) controlling for dominance rank, PBMC composition,
and relatedness among study subjects. This set of 7,359 genes (SI
Appendix, Table S2 and Dataset S1) included major targets of Dex
induction (e.g., NFKBIA, FKBP5, and PER1; Fig. 1C) and re-
pression (CSF1, IER2, and NR3C1, the gene that encodes GR)
(55). It is also enriched for genes that are both near GREs and
identified as Dex-responsive in an independent dataset (hyper-
geometric test, P = 9.6 × 10−3; ref. 55) and exhibits effect sizes
for the Dex response that are well correlated to those reported in
several other studies [Pearson’s r = 0.56, P = 3.81 × 10−11, n =
119 genes from the A549 lung epithelial cell line (55); Pearson’s
r = 0.27, P = 6.62 × 10−25, n = 1450 genes from PBMCs (66); and
Pearson’s r = 0.40, P = 7.19 × 10−125, n = 3,232 genes from
PBMCs (67)].
Dex treatment also remodeled the PBMC chromatin land-

scape, although with less pronounced effects than on gene ex-
pression. Control and Dex+ samples separated on PCs 1, 2, and
3 of the complete ATAC-seq dataset (PC1 T42 = −3.85, P =
3.95 × 10−4; PC2 T42 = 4.49, P = 5.44 × 10−4; PC3 T42 = −4.93,
P = 1.35 × 10−5; Fig. 1E). Of the 19,859 300-bp windows we
analyzed (Materials and Methods), we identified 1,480 (7.45%;
full list in SI Appendix, Table S3 and Dataset S1) that became
significantly more accessible in the Dex+ condition and 1,602
(8.07%) that become significantly less accessible after Dex
treatment, at an FDR threshold of 10% (215 and 190 at an FDR
of 1%). Further, although GR is thought to primarily bind DNA

in regions that are already accessible before nuclear trans-
location (59), regions with increased accessibility after Dex
administration were significantly enriched for two predicted GR
binding motifs (log2odds = 1.75 and 2.04, P = 1.86 × 10−16 and
9.56 × 10−30) and for binding sites for the GR cofactor activator
protein 1 (Jun-AP1 complex; log2odds =1.45, P = 3.45 × 10−23; SI
Appendix, Table S3 and Dataset S1). Conversely, Dex-repressed
regions were enriched for TF binding sites for a component of the
proinflammatory TF complex, NF-κB (the NF-κB–p50 binding
site: log2enrichment = 1.20, P = 1.57 × 10−15; SI Appendix, Table
S4 and Dataset S1).
Social status also exhibited a detectable relationship with

PBMC gene regulation, although these effects were modest
compared with the effects of Dex treatment. Dominance rank
was strongly associated with PC3 of gene expression, which ex-
plains 7.6% of the total variance in gene expression (Pearson’s
r = 0.77, P = 3.33 × 10−18; Fig. 1F), and with PC3 of chromatin
accessibility, which explains 5.7% of the total variance in chro-
matin accessibility (Pearson’s r = 0.48, P = 3.41 × 10−6; Fig. 1G).
For the gene expression data, the effects of social status for in-
dividual genes in the Dex− condition were broadly correlated
with those described in previous work on rhesus macaque
PBMCs [Pearson’s r = 0.39, P = 4.08 × 10−24 (10)]. However, the
effects of rank on gene expression levels were substantially
weaker than those described for either purified individual cell
types or for all pooled white blood cells (including granulocytes)
in the same study subjects (9) (SI Appendix, Fig. S1), potentially
because here we performed more sample processing after a
longer time delay following blood sample collection than for
previous mixed cell populations (9, 10). Thus, at an FDR of 10%,
we identified only 69 social rank-associated genes in the Dex−
samples (n = 1,162 genes at an FDR of 20%). However, con-
sistent with previous findings, genes more highly expressed in
low-status animals were enriched for proinflammatory signaling
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Fig. 1. Dominance rank and Dex treatment both induce widespread changes in gene expression and chromatin accessibility. (A) Social group formation for
one study group. Each line represents a different female and starts at the date of her introduction. Females introduced earlier were higher-ranking at the
time of sampling (Pearson’s r = −0.67, P = 8.8 × 10−7; n = 9 groups and 43 females). (B) Schematic of the in vitro GC challenge. Paired PBMC samples from each
female were treated with either 1 μM Dex (Dex+), a synthetic GC, or 0.02% ethanol (the vehicle for Dex, Dex−) and subjected to a 90-min incubation period
before RNA and DNA extraction. (C) Example response to Dex challenge for FKBP5, a known GC-induced gene, for chromatin accessibility in intron 4 of
isoform FKBP5-201 (P = 7.36 × 10−18; this region also falls in intron 5 of isoform FKBP5-202) and for gene expression (P < ×10−100). (D) Dex treatment is strongly
associated with the first PC of gene expression data (paired T42 = 80.61, P = 1.12 × 10−47) and (E) with the first three PCs of chromatin accessibility (PC1 T42 = −3.85,
P = 3.95 × 10−4; PC2 T42 = 4.49, P = 5.44 × 10−4; PC3 T42 = −4.93, P = 1.35 × 10−5). Social status is significantly associated with PC3 for both (F) gene expression
(Pearson’s r = 0.77, P = 3.33 × 10−18) and (G) chromatin accessibility (Pearson’s r = 0.48, P = 3.41 × 10−6).
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(e.g., inflammatory response, P = 4.2 × 10−4, TNF signaling, P =
1.6 × 10−4; complete enrichment results presented in SI Ap-
pendix, Table S5 and Dataset S1). Weighted correlation network
analysis (68) also revealed seven coregulated gene modules that
carried a signature of rank (SI Appendix, Tables S6 and S7 and
Dataset S1), including one of the largest modules (“module 3,”
composed of n = 1,011 genes), for which the module eigengene
was significantly negatively associated with rank (β = −0.050, P =
0.042). This module was enriched for genes involved in the in-
flammatory response, including genes related to IL-6 production
(4.4-fold enrichment, P = 1.8 × 10−6) and MyD88 TLR signaling
(4.2-fold enrichment, P = 6.8 × 10−4; SI Appendix, Table S8 and
Dataset S1). Finally, we identified 159 rank-associated chroma-
tin accessibility windows in the Dex− samples (0.8% of those
tested at an FDR < 10%; 1,084 at an FDR < 20%), controlling
for kinship and tissue composition—the first evidence to date for
an effect of social status on locus-specific chromatin accessibility
in humans or other primates.

GC Treatment-Dependent Effects of Social Status. Previous work
indicates that LPS stimulation magnifies the effects of social
status on gene expression levels. In contrast, our results show
that Dex treatment dampens the social status–gene expression
relationship. Among genes that were nominally associated with
status in either the Dex+ or Dex− conditions (P < 0.05; n =
2,279 genes), social status effects on gene expression were, on
average, four times stronger in the Dex− condition compared
with Dex+ (paired T2278 = 17.33, P = 2.63 × 10−63; Fig. 2A).
Additionally, with increasing effect size, the number of social
status-associated genes detected in the Dex− versus the Dex+
condition became increasingly more biased toward the Dex−
condition (Fig. 2B). This observation is not explained by in-

creased noise in the Dex+ condition (SI Appendix, Fig. S2A).
However, while social status effect sizes were smaller after Dex
treatment, they were generally well correlated between condi-
tions (Pearson’s r = 0.75; P < 10−300; SI Appendix, Fig. S3). Thus,
although the change in effect sizes between Dex− and Dex+
conditions implies an interaction between social status and GC
exposure, we did not identify individual genes for which the log-
fold change gene expression response to Dex was significantly
associated with social status (10% FDR).
Compared with social status effects on gene expression, social

status effects on chromatin accessibility were stable between
conditions. In regions nominally associated with rank in either
condition (P < 0.05; n = 4,083 regions), the effect of social status
was significantly different across Dex− and Dex+ conditions, but
much more similar in direction and magnitude than for gene
expression (paired T4082 = 2.69, P = 0.007; Fig. 2A). Addition-
ally, unlike for gene expression, we observed little evidence for
stronger rank-chromatin accessibility associations in the Dex−
relative to the Dex+ condition with increasing effect size (Fig.
2B), despite higher variance in the Dex+ condition (SI Appendix,
Fig. S2B). Thus, while GC treatment rapidly altered social status
effects on gene expression levels it did not induce systematic
changes in social status-associated chromatin accessibility on the
same timescale.

Dex Treatment Decouples Social Status-Associated Chromatin
Regions from Social Status-Associated Gene Expression. To test
whether social status effects on gene expression are explained by
social status-driven differences in chromatin accessibility, we
next examined the relationship between the RNA-seq and
ATAC-seq datasets. In the Dex− condition, we found that re-
gions that were more accessible in high-ranking females were
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Fig. 2. Differences in the stability of social status effects on gene expression and chromatin accessibility after Dex treatment. (A) The effects of social status
on gene expression are stronger before Dex treatment (paired T2278 = 17.33, P = 2.63 × 10−63), but status effects on chromatin accessibility are similar before
and after Dex treatment (paired T4082 = 2.69, P = 0.007). “Scaled difference” is the difference between the absolute value of the effect of social status in the
Dex− and Dex+ conditions scaled by the sum of the effect sizes: ðjβstatus  in Dex−j− jβstatus  in Dex+jÞ=ðjβstatus  in Dex−j+ jβstatus  in Dex+jÞ. Solid vertical lines represent the
median difference in scaled effect sizes. (B) We observed an excess of genes with large social status effects on gene expression in the Dex− versus the Dex+
condition. In contrast, we observed no consistent bias in the number of social status-associated genes in the Dex− versus Dex+ condition as effect size in-
creased. The x axis depicts mutually exclusive bins of effect sizes for the standardized effects of status on gene expression (blue) or chromatin accessibility
(pink). The y axis represents the log2-transformed ratio (±SE) of the number of genes falling in each bin for the Dex− compared with the Dex+ condition.
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associated with genes that were also more highly expressed in
high-ranking females (and vice versa) (Pearson’s r = 0.23, P =
1.51 × 10−199; n = 16,677 region-nearest gene pairs; Fig. 3A).
This relationship becomes stronger as either the threshold for
classifying social status-associated genes (Fig. 3C) or the
threshold for classifying social status-associated chromatin ac-
cessibility regions becomes more stringent (Fig. 3D). Thus, while
social status effects on chromatin accessibility explained only
5.3% (95% CI: 4.6–6.0%) of variance in social status effects on
gene expression for all region–gene pairs, they explained 12.7%
(95% CI: 10.7–14.9%) of variance for genes where rank was
nominally associated with gene expression (P < 0.05). This esti-
mate is almost certainly conservative, as the regulatory elements
that influence a gene’s expression are not well predicted by
proximity alone (69). Thus, under non-GC-stimulated condi-
tions, social environment-driven changes in the chromatin land-
scape may mechanistically contribute to social environment-driven
variation in gene expression levels.
Social status effects on chromatin accessibility and social sta-

tus effects on the expression levels of nearby genes were also
significantly correlated after Dex stimulation (r = 0.10, P =
2.76 × 10−9; n = 16,677 region–gene pairs; Fig. 3B). However,
the magnitude of this correlation was reduced more than twofold
relative to before treatment (Dex−). Social status effects on
chromatin accessibility explained only 1.07% of the variance in
social status effects on gene expression in the Dex+ data, and
this relationship was not appreciably strengthened by altering the
statistical threshold for identifying status-associated genes or
regions (Fig. 3 C and D, dark colors). Thus, social status effects
on different levels of gene regulation are partially decoupled
following GC treatment, at least on a short-term timescale.

Shared Chromatin Accessibility Signatures of Social Status and GC
Treatment. Previous studies in female rhesus macaques have
identified evidence for higher GC levels and increased GC re-
sistance in low-status animals (reviewed in ref. 70), and chronic
social stress effects on immune gene expression have been hy-
pothesized to originate in part from GC dysregulation (28). If
social status effects operate through a GC-mediated pathway,
then gene regulatory phenotypes affected by social status should
overlap with those affected by Dex treatment.
This prediction was better supported by the chromatin acces-

sibility data than the gene expression data. The effects of rank on
gene expression in unchallenged cells and the effects of Dex on
gene expression were not correlated (Pearson’s r = 0.007, P =
0.47; Fig. 4A). Further, rank effects were actually stronger in
Dex-unresponsive genes (Dex effect FDR > 20%) than in Dex-
responsive genes (Dex effect FDR < 1%; T2014 = 5.10, P =
3.66 × 10−7). In contrast, regions that were more accessible after
Dex treatment were also more accessible in high-ranking fe-
males, and vice versa (Pearson’s r = 0.18, P = 5.78 × 10−147; Fig.
4B). Further, TF binding site (TFBS) motifs enriched in regions
that were more accessible in high-ranking individuals were sim-
ilarly enriched in regions that opened after Dex treatment
(Pearson’s r = 0.64, P = 1.95 × 10−41; Fig. 4C, SI Appendix, Table
S4, and Dataset S1). Compared with PBMCs from low-status
individuals, cells from high-status individuals thus appear epi-
genetically primed to respond to GCs. As was the case with
gene expression, we found little evidence for rank-by-treatment
interactions on chromatin accessibility: Rank predicted the
log2-foldchange chromatin accessibility response to Dex at three
loci (FDR < 10%; n = 31 loci at an FDR < 20%).

A

C D

B

Fig. 3. Dex treatment affects the correlation between rank-associated chromatin accessibility and rank-associated gene expression levels. Standardized rank
effects on chromatin accessibility and standardized rank effects on the expression of the closest gene are correlated in the Dex− condition (Pearson’s r = 0.23,
P = 1.51 × 10−199; n = 16,677 region–gene pairs) (A) but negligibly so after Dex treatment (r = 0.10, P = 2.76 × 10−9; n = 16,677) (B). (C and D) Pearson’s
correlation (±SE) between the standardized effect of social status on chromatin accessibility and the standardized effect of social status on gene expression
for the closest gene (y axis) is stronger in the Dex− condition compared with the Dex+ condition, whether conditioning on the gene expression association
with dominance rank (C, x axis) or the chromatin accessibility association with dominance rank (D, x axis). CA, chromatin accessibility; GE, gene expression.
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Discussion
Together, our results dovetail with those from eusocial insects
[honey bees and ants: (71–74)], sticklebacks and cichlid fish (18,
60, 75, 76), and rodents (61, 77, 78) to emphasize the importance
of social modulation of gene regulation, including both gene
expression levels and epigenetic states. Our findings specifically
reinforce the role of social interactions in immune cell gene
regulation, building substantially on our prior work (9, 10) by
revealing a key role for chromatin dynamics and accessibility to
TF binding. Here, we provide support for systematic, status-
induced changes in chromatin accessibility in primary immune
cells, adding to the growing literature on social status effects on
gene expression (9, 10, 44, 47, 49, 52, 79, 80), DNA methylation
(10, 81–84), and H3K27 acetylation (60). Rank-driven variation
in chromatin accessibility may also contribute to previously
reported rank-driven variation in the gene expression response
to LPS (9). Our results show that low-ranking animals present
chromatin landscapes more accessible at some TFBSs for NF-
κB, a key TF in the inflammatory response. In contrast, high-
ranking females exhibit more accessible binding sites for the GR
cofactor AP-1, which is involved in antiinflammatory activity and
NF-κB repression (Fig. 4C). These effects are likely downstream
of changes in the central nervous system, where studies in mice
and voles have shown gene regulatory sensitivity to social status
(61, 62); indeed, GC release is partially controlled by activity of
the hypothalamus. However, recent evidence suggests that social
environmental effects in the peripheral immune system also re-
ciprocally influence the brain (78), raising the possibility that

effects reported here subsequently feed back to influence social
perception and behavior (85).
While social status effects are exaggerated after exposure to

LPS (9), here we found that social status effects are attenuated
after GC treatment (Fig. 2A). Our results are broadly consistent
with the evidence that chronic social stress leads to poor control
of the inflammatory response (28). Specifically, by administering
a high dosage of antiinflammatory GCs we appear to have at-
tenuated, and in some cases eliminated, the signature of low
social status. However, we note that Dex treatment did not en-
tirely eliminate the gene regulatory signature of social status.
High-ranking and low-ranking females presented consistently
different patterns of chromatin accessibility regardless of treat-
ment condition, resulting in a detectable association between
social status effects on gene expression and chromatin accessi-
bility at baseline, but not following Dex administration. These
observations suggest that the imprint of chronic stress exposure
may persist in the epigenome even when gene expression levels
shift in response to short-term environmental cues. Such a model
is appealing because the effects of social adversity are sometimes
observable over the span of years, suggesting that they remain
“biologically embedded” even as individuals experience and re-
spond to other environmental stimuli (86). Some degree of
decoupling between the gene regulatory substrates for biological
embedding and gene expression levels themselves could help
satisfy this requirement for simultaneous stability and plasticity.
A nonmutually exclusive alternative explanation is that we

stopped the experiment too early to observe treatment effects on

A C

B

Fig. 4. The relationship between rank effects and Dex effects on gene expression, chromatin accessibility, and TF accessibility. (A) The effects of rank and Dex
treatment on gene expression were uncorrelated (Pearson’s r = 0.007, P = 0.47), unlike (B) the effects of rank and Dex treatment on chromatin accessibility
(Pearson’s r = 0.18, P = 5.78 × 10−147). (C) TF binding sites enriched in Dex-induced regions (n = 2,874 regions, FDR < 20%) also were enriched in regions that
were more accessible in high-ranking females (n = 544 regions, FDR < 20%; Pearson’s r = 0.64, P = 1.95 × 10−41). Conversely, TF binding sites enriched in Dex-
repressed regions (negative values on the x axis; n = 2,905 regions, FDR < 20%) were also enriched in regions that were more accessible in low-ranking
females (negative values on the y axis; n = 540 regions, FDR < 20%). Each point (n = 369 TFBS) represents the log2-fold enrichment of one TF motif in Dex-
induced compared with Dex-repressed regions (x axis) and rank-induced versus rank-repressed regions (y axis). TF motifs closely associated with GC regulation
(GRE, AP-1, and NF-κB) are shown in colored circles.
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social status-associated chromatin accessibility comparable to
those observed for gene expression. We chose our sample col-
lection time because it yields a strong gene expression response
to Dex (55). However, recent evidence suggests that gene ex-
pression changes occur rapidly in response to a stimulus and
often precede detectable changes in the epigenome (e.g., CpG
methylation; refs. 87 and 88). After stimulation by GCs, many
GR–DNA binding events occur at sites that are already acces-
sible before GC stimulation (37). Thus, changes in social status
effects on chromatin accessibility might not manifest until a later
time point (e.g., as a consequence of the secondary effects of GC
signaling and GR activation). Such a possibility would be consis-
tent with our observation that the gene expression data are more
clearly separated by treatment condition than the chromatin ac-
cessibility data after 90 min (Fig. 1 D and E). Future studies with
more time points would enable finer dissection of social status
effects on the gene regulatory response to GCs, including whether
social status affects how quickly cells return to a baseline state.
Our findings combine with those of others (67, 87, 89) to

emphasize that the detectability and magnitude of predictors of
gene expression variation are often context-dependent. Here we
demonstrate that this context dependence depends, in turn, on
the stimulus and cell type assayed: In our system, social status
effects increase after LPS exposure (9), which is detected by
TLR4 receptors on monocytes and macrophages, but decrease
after GC exposure, which is detected by GR, a much more
broadly expressed gene. Context-dependent effects on gene
regulation have attracted substantial interest in research on the
genetic contribution to gene regulation, where an increasing
number of studies have identified genetic variants that influence
the response to environmental stimuli (i.e., “response-QTL”) as
opposed to, or in addition to, gene expression levels at baseline
(e.g., refs. 67 and 90–95). Recent work suggests that response-
QTL can emerge as a consequence of genetic variation that in-
fluences chromatin accessibility in enhancer regions before
stimulation (96). Under this “enhancer priming” model, changes
in the cellular environment poststimulation alter the comple-
ment of active TFs, thus translating previously silent effects of
genotype on chromatin architecture to detectable effects on gene
expression. Our results suggest that social environmental effects on
gene expression can be masked or unmasked by environmental
stimuli in a similar fashion. Here, status-driven differentially ac-
cessible chromatin predicts status-driven differential gene expres-
sion under some conditions (Dex−) but not others (Dex+), likely
in relationship to the activity of GC-associated TFs.
Taken as a whole, our results indicate a subtle but potentially

important role for GC physiology in mediating the effects of
social status on PBMC function. Key aspects of PBMC chro-
matin accessibility in high-status females—particularly increased
accessibility to the GR cofactor AP-1 and decreased accessibility
to NF-κB—overlap with Dex-induced changes. Given that GR
binding is largely predicted by the chromatin accessibility land-
scape before GC stimulation (59, 97, 98), we speculate that in-
creased accessibility at GR cofactor binding sites in high-ranking
animals at baseline could drive more efficient GC negative
feedback (99), which in turn would result in tighter control of the
inflammatory response. If so, increasing chromatin accessibility
at key GC-sensitive targets (or decreasing accessibility at key NF-
κB targets) in cells from low-ranking animals [e.g., by using
epigenome editing approaches (100)] would be expected to
reconcile some of the gene expression differences between low-
and high-status individuals. Notably, our results also suggest that,
while most research on the gene expression response to GC
stimulation has focused on its genetic determinants (56, 101,
102), social environmental factors may also be an important
factor to consider in human population samples.
Finally, we note that the current study is limited to female

rhesus macaques, where social hierarchies are stable, strictly

enforced, and determined largely by order of introduction (or, in
more naturalistic settings, by kin-based nepotism) rather than
physical ability. Given that social environmental conditions can
also affect gonadal function (103, 104), the effects of social status
reported here may differ in males. Indeed, strong sex-dependent
relationships between dominance rank and immune gene ex-
pression have recently been reported in wild baboons, with much
more pronounced signatures of rank in males compared with
females (80). Further, relatively weak effects of social status were
observed in female baboons, potentially due to the stress-
buffering effects of living with close kin. Indeed, compara-
tive studies across primates indicate that dominance rank is
most closely linked to GC levels when hierarchical relation-
ships are strictly enforced and subordinates have few avenues
for social support (105). If GC-mediated gene regulation plays
an important role in social status-driven changes in immune
gene regulation, as our findings here suggest, similar hetero-
geneity across sexes and social contexts should be expected.

Materials and Methods
Study Population. Samples were collected from 43 captive female rhesus
macaques (Macaca mulatta) at the Yerkes National Primate Research Center
in March 2015. These study subjects were part of a multiyear study on the
effect of dominance rank (the primary measure of social status in rhesus
macaques) on immune function. Demographic details for each study subject
are provided in SI Appendix, Table S1 and Dataset S1. The study commenced
in January–June 2013 using 45 females (five females assigned to each of nine
social groups), as described in ref. 9. In March–June 2014, social group
membership was rearranged to form nine new groups in which females that
occupied the same or adjacent ordinal ranks in the initial social groups were
cohoused together. This approach maximized all possible changes in domi-
nance rank between the initial and rearranged groups, a strategy that al-
lows us to establish the causal relationship between dominance rank and
downstream outcomes. Social groups were constructed by sequentially in-
troducing females into indoor–outdoor run housing (25 m by 25 m for each
area) over the course of 2–15 wk, and behavioral data collection started
after the fifth and final female was introduced into each group.

For the present analysis, we used only samples collected in the second
phase of the study (study groups formed in March–June 2014). One of the
original study subjects died before we could sample her, and a second fe-
male was ill at the time of sampling so we excluded her from the current
analysis, leaving a total of 43 study subjects. Samples were collected 38–
50 wk after the fifth and final female was introduced to each social group,
after rank hierarchies had stabilized following the group rearrangement.
Behavioral data in this study included a mean of 19.5 h of observational data
per group (range = 14.5–23.0 h), collected using focal sampling (106). We
used the EloRatings package in R to assign social status using the Elo
method, a continuous measure of dominance rank that is based on an ani-
mal’s history of dominance interactions with its groupmates (63, 107, 108).
The Elo stability index ranged between 0.995–1.00 (n = 9 groups), where
1 represents a hierarchy in which higher-ranking females always win com-
petitive encounters with lower-ranking females, with no rank reversals, and
0 represents one in which rank does not predict the outcomes of competitive
interactions (109). Data included in this study were obtained in accordance
with Institutional Animal Care and Use Committee protocols approved by
Emory University (YER-2001677-00715) and Duke University (A079-12-03).

In Vitro Dex Treatment. For each study subject, we drew 4mL of blood into BD
Vacutainer CPT tubes and shipped the blood sample overnight on ice from
the Yerkes National Primate Research Center to Duke University, where
PBMCs were purified via gradient centrifugation. To control for variation in
cell type, an aliquot of 50,000 PBMCs was analyzed by flow cytometry. We
quantified the proportion of 10 different cell types in the sample: classical
monocytes (CD14+/CD16−), CD14+ intermediate monocytes (CD14+/CD16+),
CD14− nonclassical monocytes (CD14−/CD16+), helper T cells (CD3+/CD4+),
cytotoxic T cells (CD3+/CD8+), double-positive T cells (CD3+/CD4+/CD8+), CD8− B
cells (CD3−/CD20+/CD8−), CD8+ B cells (CD3−/CD20+/CD8+), natural killer T
lymphocytes (CD3+/CD16+), and natural killer cells (CD3−/CD16+). Cell type
composition was summarized using PC analysis, where the first three PCs of
cell composition together explained 97.7% of the variance in whole blood
composition. We did not obtain flow cytometry data for two animals, so im-
puted the values of PCs one to three for these two samples using elastic net
regression fit to the Dex− gene expression data (110).
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For each study subject, we seeded 1 million PBMCs each into two wells of a
tissue culture plate containing 2 mL of media (RPMI; 15% FBS; 1% penicillin–
streptomycin). We treated one of the wells with 1 μM Dex (Dex+) and the
other with 0.02% EtOH (Dex−), the vehicle for Dex. Cells were then in-
cubated for 90 min (37 °C and 5% CO2), washed with 1× PBS, and then
harvested for gene expression and chromatin accessibility analyses.

Chromatin Accessibility.Wemeasured chromatin accessibility using the ATAC-
seq method (64, 65) and 50,000 cells from each treatment–sample combi-
nation (n = 43 Dex− and 43 matched Dex+). We followed the protocol from
ref. 65 but skipped the cell lysis step, a modification that reduces the pro-
portion of reads mapping to the mitochondrial genome. ATAC-seq libraries
were amplified for a total of 12 PCR cycles, barcoded, multiplexed, and se-
quenced on an Illumina NextSeq 500 using paired-end, 38-bp reads. Reads
were mapped to the rhesus macaque genome (Mmul_8.0.1; Ensembl gene
build 87) using the bwa-mem algorithm with default settings (111). The
resulting dataset exhibited the typical periodic pattern of insert sizes asso-
ciated with nucleosome positioning (SI Appendix, Fig. S3). For downstream
analyses, we only considered reads that mapped uniquely to the nuclear
genome with a mapping quality score ≥10. For differential accessibility anal-
ysis, we then counted the number of Tn5 insertion sites (5′ of the reads aligned
to the positive strand offset by +4 bp and to the negative strands offset by −5 bp)
that mapped to nonoverlapping 300-bp windows of the genome using the
bedtools “coverage” function. Before normalization, we filtered all regions that
did not pass our coverage threshold (median cpm < 0.5 in the 86 samples) or
had poor mappability [<0.90 as measured using GEM (112)].

Gene Expression. Total RNA was extracted from each PBMC sample using
Qiagen’s RNeasy Mini kit. RNA-seq libraries were prepared from 200 ng of
total RNA using the NEBNext Ultra RNA Library Prep Kit and sequenced on
an Illumina NextSeq 500 using paired-end, 38-bp reads. We quantified gene
expression levels from the resulting reads by aligning them to the rhesus macaque
transcriptome (Mmul_8.0.1; Ensembl gene build 87) using kallisto (113) and analyzed
gene-wise estimates for genes with reads per kilobase per million mapped reads
≥2 in at least half the samples from each condition (n = 10,385 genes). We obtained
40.0 million (±1.2 SE) and 53.1 million (±2.1 SE) paired-end reads per RNA-seq and
ATAC-seq library, respectively (see also SI Appendix, Table S9 and Dataset S1).

Associating Genomic Regions with the Nearest Gene. We paired each of the
19,859 nonoverlapping windows from the chromatin accessibility analysis to
the transcription start site of the nearest gene. For a subset of these region–
gene pairs (n = 4,129), the nearest gene was not included in the gene ex-
pression dataset; these pairs were excluded from downstream analysis. We
thus analyzed a total set of 16,677 region–gene pairs, which consisted of
16,102 regions and 7,547 genes.

Read Count Normalization and Correction for Batch Effects.We normalized the
filtered RNA-seq and ATAC-seq read count matrices using the function voom
from the R package limma (114). Next, we modeled these normalized values
as a function of the social group membership of the sample donor (nine
total social groups). This allowed us to remove biological variation related to
differences in group dynamics and, because we sampled all females in each
group on the same day, most technical batch effects related to sample col-
lection and processing. We then used the residuals from these models as our
primary outcome measure in all subsequent analyses.

PC Analyses. To examine global patterns of gene expression and chromatin
accessibility, we carried out a PC analysis on the residual gene expression and
chromatin accessibility data, after removing effects of study subject and cell
composition. For both datasets, we then performed PC analysis on the
samplewise correlation matrices.

Modeling Rank and Treatment Effects on Gene Regulation. We used a linear
mixed-effects model that controls for relatedness to identify genes or regions
that were significantly associated with Dex treatment or dominance rank
(115–117). We analyzed the normalized chromatin accessibility and nor-

malized gene expression datasets separately using the R package EMMREML
(118). We estimated the effects of rank and treatment on chromatin acces-
sibility in each region and expression of each gene using the following model:

y = μ+ tδ+ rβ1 × iðt = 0Þ+ rβ2 × iðt = 1Þ+XV + Zu

+ «,u∼MVN
�
0, σ2uK

�
, «∼MVN

�
0, σ2eI

�
,

[1]

where y is the 86-sample vector of normalized gene expression levels or
chromatin accessibility levels for a given gene/region, μ is the intercept, t is
the treatment (Dex− = 0, Dex+ = 1), r is the Elo rating (i.e., social status), i is
an indicator variable for the treatment (Dex− = 0, Dex+ = 1), β1 is the effect
size of status in the Dex− condition, β2 is the status effect in the Dex+
condition, and δ is the effect of Dex treatment. The m by 1 vector u is a
random effects term to control for kinship and other sources of genetic
structure. Here, m is the number of unique females in the analysis (m = 43),
the m by m matrix K contains estimates of pairwise relatedness derived from
a 54,165-variant genotype dataset described in ref. 9, σ2u is the genetic var-
iance component (0 for a nonheritable trait; note that most gene expression
levels are heritable; refs. 119 and 120), and Z is an incidence matrix of 1s and
0s that maps measurements in the Dex+ and Dex− conditions to individuals in
the random effects term, thus accounting for repeated measurements for the
same individual. Residual errors are represented by «, an n by 1 vector, where
σ2e represents the environmental variance component (unstructured by genetic
relatedness), I is the identity matrix, and MVN denotes the multivariate normal
distribution. Other fixed effects covariates were the first three PCs of the cell
type proportion data, which together explain 97.7% of the variance in whole-
blood composition (matrix X, with effect sizes V). For each dataset and gene,
we tested the null hypothesis that the effect of interest (β or δ) was equal to
0 versus the alternative hypothesis that the effect was not equal to 0.

For all models, we produced empirical null distributions for rank effects by
permuting the Elo rating values associated with pairs of samples (Dex− and
Dex-treated) as a block, 1,000 times, and rerunning our analyses. To produce
a corresponding empirical null for the effect of treatment, we randomized
treatment (Dex− versus Dex+) within the pair of samples for each female.

For all of our analyses, we controlled for multiple testing using a gener-
alization of the FDR method of Storey and Tibshirani (121) to empirical null P
value distributions generated via permutation. Gene Ontology enrichment
analyses were conducted using the R package, topGO (weight01 algorithm),
using either a Kolmogorov–Smirnov test (for gene-by-gene rank effects) or
Fisher’s exact test (for gene coexpression modules) (122). Gene coexpression
analyses were carried out using the WGCNA package (68) on the untreated
(Dex−) samples after removal of technical batch effects as described above,
following the WGCNA author recommendations (https://horvath.genetics.
ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials).

TFBS Enrichment. To test if binding sites for specific TFs were consistently
found in social status- or Dex-associated chromatin regions, we used themotif
analysis program HOMER (123) and the function “findMotifsGenome.pl.”
We conducted two comparisons to test for the enrichment of 309 known
vertebrate binding motifs: (i) regions that were more open in high-status
animals compared with regions that were more open in low-status animals
(FDR < 20%; n = 544 regions more open with higher rank, n = 540 regions
more open with lower rank) and (ii) regions that were more open after Dex
treatment compared with regions that were less open after Dex treatment
(FDR < 20%; n = 2,854 Dex-induced regions, n = 2,902 Dex-repressed regions).
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